DETECTING CHANGES IN TRENDS AND SCALING EXPONENTS OF SHORT TERM RAINFALL: CASE STUDY FOR THE ORAVSKÁ LESNÁ STATION

Autoři

  • Silvia Kohnová Slovenská technická univerzita v Bratislave, Stavebná fakulta, Radlinského 11, 81005 Bratislava, Slovensko
  • Karolína Ochabová Slovenská technická univerzita v Bratislave, Stavebná fakulta, Radlinského 11, 81005 Bratislava, Slovensko
  • Gabriel Földes Slovenská technická univerzita v Bratislave, Stavebná fakulta, Radlinského 11, 81005 Bratislava, Slovensko
  • Kamila Hlavčová Slovenská technická univerzita v Bratislave, Stavebná fakulta, Radlinského 11, 81005 Bratislava, Slovensko

DOI:

https://doi.org/10.51704/cjce.2017.vol3.iss2.pp100-105

Klíčová slova:

Rainfall intensities, scaling exponents, Mann-Kendall trend test

Abstrakt

The aim of this study was to test the rainfall trend and scaling exponent changes of different duration at the Oravská Lesná climatological station during the observation period 1964 to 2009. Trends of rainfall intensities were tested for the durations of 5, 10, 15, 30, 40, 50, 60, 120, 180, 240 and 1440 minutes from April till October and for the whole warm period. To analyze the significance of rainfall trends Mann-Kendall trend test (Kendall, 1975) was used. Trend analysis of the short-term rainfall was performed for 90% significance. In the next step, the simple scaling methodology was applied to derive scaling exponents and compared changes in their values in different observation periods. Finally, the impact of changes in trends on scaling exponents at the selected station in Slovakia was discussed.

##plugins.generic.paperbuzz.metrics##

Metriky se nahrávají ...

Reference

ADAMOWSKI, K., BOUGADIS, J. (2003). Detection of trends in annual extreme rainfall. Hydrological processes, 17, 3547-3560. doi: https://doi.org/10.1002/hyp.1353

BARA, M. - KOHNOVÁ, S. - GAÁL, L. - SZOLGAY, J. - HLAVČOVÁ, K. Škálovanie intenzít krátkodobých dažďov na Slovensku. 1. vyd. Ostrava: KEY Publishing, 2010. ISBN 978-80-7418-083-5. 74 s.

BARA, M. - ZECHELOVÁ, K. - KOHNOVÁ, S. - GAÁL, L. - SZOLGAY, J. - HLAVČOVÁ, K. Možnosti využitia metódy škálovania zrážok na lokálny a regionálny odhad návrhových intenzít krátkodobých dažďov. In Meteorological Journal. ISSN 1335-339X, 2011, vol. 14, no. 1, p. 25-32.

BERG P., MOSELEY C., and HAERTER J.O. (2013): Strong increase in convective precipitation in response to higher temperatures, Nature Geosci., doi: https://doi.org/10.1038/ngeo1731

KENDALL, M.G. (1975): Rank Correlation Methods. London: Griffin. 1975.

LÁTEČKOVÁ, J., KOHNOVÁ, S., GAÁL, L., SZOLGAY, J. (2011): Odvodenie škálovacích exponentov intenzít dažďov pre jednotlivé mesiace teplého polroku vo vybraných staniciach oblasti severovýchodného Slovenska. In Acta Hydrologica Slovaca. ISSN 1335-629, roč.12, Špeciálne číslo, s. 47-54.

MARIEN J. L., VANDEWIELE G. L., 1986: A point rainfall generator with internal storm structure. Water Resour. Res., 22, 4, 5231–5238. doi: https://doi.org/10.1029/WR022i004p00475

MENABDE, M., SEED, A. & PEGRAM, G. (1999). A simple scaling model for extreme rainfall. Water Resour. Res., 35(1), 335–339.

RODRIGUEZ-ITURBE I., GUPTA V. K., WAYMIRE E. C., 1984: Scale considerations in the modeling of temporal rainfall. Water Resour. Res., 20, 11, 1611–1619. doi: https://doi.org/10.1029/WR020i011p01611

ROMANO E., PREZIOSI E. (2013). Precipitation pattern analysis in the Tiber River basin (central Italy) using standardized indices. Int. J. Climatol., 33, 2013, 1781–1792. doi: https://doi.org/10.1002/joc.3549

SANTOS M., FRAGOSO M. (2013). Precipitation variability in Northern Portugal. Data homogenity assessment and trends in extreme precipitation indices. Atmospheric Research 131, 2013, 34-45. doi: https://doi.org/10.1016/j.atmosres.2013.04.008

SIVAPALAN M., WOOD E. F., 1987: A multidimensional model of nonstacionarity space-time rainfall at the catchment scale. Water Resour. Res., 23, 7, 1289–1299. doi: https://doi.org/10.1029/WR023i007p01289

VAES, G., WILLLEMS, P., BERLAMONT, J. (2002). 100 years of Belgian rainfall: are there trends? Water Science and Technology, 45, 55-61. doi: https://doi.org/10.2166/wst.2002.0027

VELPURI N. M.; SENAY G. B. (2013). Analysis of long-term trends (1950-2009) in precipitation, runoff and runoff coefficient in major urban watersheds in the United States. Environ. Res. Lett. 8, 2013, 024020, 6pp. doi: http://dx.doi.org/10.1088/1748-9326/8/2/024020

VENEZIANO D., BRAS R. L., NIEMANN J. D., 1996: Nonlinearity and self-similarity of rainfall in time and a stochastic model. Journal of Geophysical Res., 101, D21, 371–392. doi: https://doi.org/10.1029/96JD01658

YUE, S., KUNDZEWICZ, Z.W., WANG, L. (2012): Detection of Changes. Changes in Flood risk in Europe, Chap. 2, 11-26, 2012, IAHS special publication 10.

WAYMIRE E. C., GUPTA V. K., 1981: The mathematical structure of rainfall representation, 1, A review of stochastic rainfall models, 2, A review of the point processes theory, 3, Some applications of the point process theory to rainfall processes. Water Resour. Res., 17, 5, 1261–1294. doi: https://doi.org/10.1029/WR017I005P01261

WAYMIRE E. C., GUPTA V. K., RODRIGUEZ-ITURBE I., 1984: A spectral theory of rainfall intensity at the meso-β scale. Water Resour. Res., 20, 10, 1453–1465. doi: https://doi.org/10.1029/WR020i010p01453

Stahování

Publikováno

2017-12-31

Jak citovat

Kohnová, S., Ochabová, K., Földes, G. a Hlavčová, K. (2017) „DETECTING CHANGES IN TRENDS AND SCALING EXPONENTS OF SHORT TERM RAINFALL: CASE STUDY FOR THE ORAVSKÁ LESNÁ STATION", Czech Journal of Civil Engineering, 3(2), s. 100-105. doi: 10.51704/cjce.2017.vol3.iss2.pp100-105.

Číslo

Sekce

Articles